BMVSS Knee

a low-cost passive prosthesis to replicate able-bodied motion

Molly Berringer, Paige Boehmcke, Jason Fischman, Athena Huang, Danny Joh, Cali Warner

Mentor: Murthy Arelekatti

May, 2, 2017

Final Prototype

Need for knee prostheses in India

200,000 above-knee amputees in India Can cause unemployment and social stigmatization

Problem Scope

Early Stance Flexion

Latch

Damper

Current Products

Goal: Able-Bodied Walking Kinematics

Problem Scope

> Latch

Early Stance

Flexion

Da

Damper

Design Requirements

Consistent performance across environmental conditions	Range of temperatures (5-118 Fahrenheit in India) Dirt, sand, mud, water	
Low maintenance	3 years before maintenance/replacement Fatigue life through 3 million cycle	
Close to able-bodied gait	 20 degrees early-stance flexion 60 degrees swing phase flexion Accommodates different walking velocities Damping of ~20-30Nm damping during flexion Damping of ~2.7-5.5Nm damping during extension Smooth motions in knee and prevent jerky/jolting stops Mechanism fixed before heel strike, regardless of knee extension Less than 3 degrees of backlash Energy conserving through early stance flexion (10.5 J) 	
Low cost	• Cost: <\$150	
Discreet	Quieter than current designMust be worn discreetly under pants (size consideration)	
Structural integrity	Accommodate body weight (70kg) Stability to withstand flexion moment of 40 Nm without buckling	

Problem Scope

Early Stance

Flexion

Latch

Damper

Building on Prior Work

V.N.M. Arelekatti and A.G. Winter. (2015) *Design of a Fully Passive Prosthetic Knee Mechanism for Transfemoral Amputees in India.* IEEEE ICORR.

Issues with Previous Design: Early Stance Flexion (ESF) ESF mechanical

component

Issues with Previous Design

Problem Scope

Latch

Flexion

Damper

Early Stance Flexion

- Necessary for able bodied gait, and metabolic efficiency
- Not present in any current developing world prosthesis

Early Stance

Flexion

Problem Scope

Latch

Damper

Force Profile Modularity

- Increasing force required for flexion up to 5 N-m
- Flexion axis can be moved 3.2 cm
 - This accounts for a wide range of GRF profiles among amputees

Stiffness Modularity

- Moment arm can increase 2.3x
- Torsional stiffness of 0.8 7.0 N-m/kg-rad

- covers calculated ideal 2.96 N-m/kg-rad

• Flexion angles of 4 – 22 degrees

Latch Provides Early Stance Stability

Risk of buckling

Locking axis can control latch

Solution to prevent buckling: Use 'locking axis' position to control latch engagement

Problem Scope

Early Stance Flexion

Latch

Damper

Placement of Locking Axis

GRF transition point chosen as GRF COP when we want knee to unlock

Problem Scope

Early Stance Flexion

Latch

Damper

Damping the Knee for Able-Bodied Gait

Damping the Knee for Able-Bodied Gait

Justification for Moving to Rotary Damper

- **Simple integration** into knee design with other components
- **Minimizes leakage** (the only dynamic seal is the rotating one, better than sliding seal on the linear damper)
- More compact (dimensions are smaller because of high viscosity liquid)
- More innovative, compared to the existing designs of knees using viscous dampers
- Simple in design, no accumulator
- Lower cost

Rotary Damper Design and Build

Problem Scope

Flexion

Rotary Damper Testing Showed Positive Results

Angular Velocity (rad/sec)	Calculated Torque from equation (Nm)	Physical Test (Nm)
3.14	2.67	~3 to 4
6.28	3.05	~4 to 5

Possible Sources of Error:

- Apparent fluid viscosity was estimated from a shear-thinning graph
- The physical test did not have constant angular velocity since human motion was used
- Static friction could not be calculated with the torque wrenches

Early Stance

Flexion

Problem Scope

E La

Latch

Damper

Ways to Improve the Rotary Damper

Things to Improve:

- Bi-directional damping
- Two dampers with a one-way clutch

Optimizing design:

- Concentric circles
- Decrease thickness between walls

Disassembled ACE rotary damper

Problem Scope

Early Stance Flexion

Latch

Damper

Damper Integration

Testing

- Latch was well accepted
- Damping is more than is wanted

QUESTIONS?

Stability Zone

Unlocks latch and flexes knee

Unlocks latch

Flexes knee

Superpose for overall region of instability

Another Possible Solution to Rotary Damping

Alternate concept:

- Rotary damper with orifice
- Can use Newtonian fluid
- Can use one way valve for bi-directional damping

MCMs

Latch

Early Stance Flexion

Damper